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We investigate the stretching and breakup of a drop freely suspended in a viscous 
fluid undergoing chaotic advection. Droplets stretch into filaments acted on by a 
complex flow history leading to exponential length increase, folding, and eventual 
breakup ; following breakup, chaotic stirring disperses the fragments throughout the 
flow. These events are studied by experiments conducted in a time-periodic two- 
dimensional low-Reynolds-number chaotic flow. Studies are restricted to viscosity 
ratios p such that 0.01 < p < 2.8. 

The experimental results are highly reproducible and illustrate new qualitative 
aspects with respect to the case of stretching and breakup in linear flows. For 
example, breakup near folds is associated with a change of sign in stretching rate; 
this mode of breakup leads to the formation of rather large drops. The dominant 
breakup mechanism, however, is capillary wave instabilities in highly stretched 
filaments. Other modes of breakup, such as necking and end-pinching occur as well. 

We find that drops in low-viscosity-ratio systems, p < 1, extend relatively little, 
0(101-102), before they break, resulting in the formation of large droplets that may 
or may not break again; droplets in systems with p > 1, on the other hand, stretch 
substantially, O( lo2-lo4), before they break, producing very small fragments that 
rarely break again. This results in a more non-uniform equilibrium drop size 
distribution than in the case of low-viscosity-ratio systems where there is a 
succession of breakup events. We find as well that the mean drop size decreases as 
the viscosity ratio increases. 

The experimental results are interpreted in terms of a simple model assuming that 
moderately extended filaments behave passively ; this is an excellent approximation 
especially for low-viscosity-ratio drops. The repetitive nature of stretching and 
folding, as well as of the breakup process itself, suggests self-similarity. We find that, 
indeed, upon scaling, the drop size distributions corresponding to different viscosity 
ratios can be collapsed into a master curve. 

1. Introduction 
The mechanical dispersion of immiscible fluids is of importance both in nature and 

in many industrial applications. Common industrial objectives involve dispersion of 
one fluid phase into another, either to form an emulsion, or to increase the interfacial 
area between the two phases for more efficient heat and/or mass transfer. Examples 
include blending of molten polymers to form two-phase structures of unique 
properties, dispersion of colour concentrates, mass transfer to bubbles in polymer 
devolatilization, and many more. The problem is of both practical and academic 
interest, and has thus received considerable attention in the fluid mechanics 
literature over the past fifty years starting with work by G.  I. Taylor in 1934. As 
indicated by Taylor, some of the essential aspects of the problem can be captured by 
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studying the behaviour of a single droplet in linear flow and the central question is 
the determination of flow conditions which may result in drop breakup. There are 
two competing forces at  work in drop deformation and breakup: the flow-induced 
stress tends to deform the drop and interfacial tension resists the deformation. Under 
some conditions, the interfacial forces are insufficient to balance the viscous stresses, 
and the drop elongates and breaks. The problem admits analytical and com- 
putational treatment but it is far from being completely understood. Most, if not all, 
of the analytical and computational work to date has been restricted to linear flows. 
Even in this relatively simple case, the equations of motion must be solved for the 
flow within and around the drop and boundary conditions applied on the surface of 
the drop, and the resulting drop shape must be determined as part of the solution. 
To date, no general solution has been found, but progress has been made through 
asymptotic analyses, considering conditions for which the drops are either spheroidal, 
or highly deformed. In addition, several numerical methods have been employed, but 
they have been limited to special flow conditions, e.g. axisymmetric extensional flow, 
plane hyperbolic flow, or shear flow, for particular values of the viscosity ratio (see 
review papers by Acrivos 1983 and Rallison 1984). 

A relatively large number of experimental studies of drop behaviour in viscous 
shear flows have been reported; most works (Taylor 1934; Rumscheidt & Mason 
1961 ; Grace 1971) consider drops in either two-dimensional irrotational flow or in 
simple shear flow. The analysis of intermediate flows, flow spanning the range 
between simple shear and pure extension, is relatively recent and requires a 
considerable increase in the sophistication of the experimental technique (Bentley & 
Leal 1986; Stone & Leal 1989a, b) .  However, in spite of the many experimental and 
theoretical works on drop deformation and breakup carried out in the past few 
decades, we are still unable to model breakup processes in realistic flows. Often the 
flow in systems of practical interest is complex and the velocity field that each drop 
experiences, as it moves through the flow, is not known. The deformation and 
breakup are related in a complicated way to the local velocity field and the fluid 
properties and, in general, they are affected by the presence of other drops. Clearly, 
simplifications are necessary in order to make the problem mathematically tractable. 

This paper involves a combination of experimental and computational studies. 
The objective is to describe the deformation, fragmentation and dispersion of fluid 
drops freely suspended in a bulk fluid undergoing chaotic flow. The use of a chaotic 
flow is a means to an end; chaotic flows produce complex trajectories - mimicking 
those of more complex flows-but at the same time they admit careful 
experimentation and a fair degree of computation. However, the multiplicity of 
parameters and the richness of chaotic flows - involving regions of regularity and 
irregularity - makes a complete analysis rather forbidding and several simplifications 
are necessary. The experimental studies are restricted to very low volume fractions 
in such a way that in the companion theoretical analysis we can neglect 
hydrodynamic interactions between drops or fluid filaments. The flow conditions are 
restricted to global chaos in such a way that effects arising from regular regions 
(islands) can be negligible. As we shall see however, this still leaves several interesting 
physical phenomena; in fact, many modes of breakup, readily observed in chaotic 
flows, are difficult to observe or simply cannot happen in linear flows. 

Flow visualization is the primary experimental tool and the study of mixing of 
passive tracers in the journal-bearing flow by Swanson & Ottino (1990) provides the 
starting point for the study conducted here. In fact, our investigation can be 
regarded as a study of the evolution of a dynamic structure - a highly stretched drop 
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or fluid filament -driven by a chaotic flow. In principle, we would like to find 
answers to the following kinds of questions : How do drops break in the chaotic and 
regular regions ‘1 What is the smallest drop size that can be produced with a given 
energy input ? Is it possible to produce drops of an arbitrarily prescribed size ? What 
is the nature of the drop size distribution ; does i t  obey any kind of scaling behaviour ? 
What aspects of the problem can be analysed computationally? How far can 
computations go ? Obviously, this is a rather ambitious list and we will not be able 
to provide complete answers to all these questions. Nevertheless, we hope that the 
investigations reported here will help to clarify some of these questions and will 
provide a motivation for further study of the behaviour of droplets, and other 
microstructures, in chaotic flows. 

The paper is organized as follows: $2 reviews some of the experimental and 
theoretical studies of drop breakup in linear flows with most of the attention focused 
on the case of ‘infinitely’ extended filaments; readers familiar with drop breakup 
may proceed directly to $3 which describes the apparatus, the kinematics of the flow, 
the fluids properties, and the visualization techniques. Section 4 is devoted to the 
presentation of experimental and computational results. Before we turn our 
attention to specific details it  might be useful to discuss the nature of the 
comparisons between the experimental results and the computational predictions 
presented in $4. The comparison between figures is largely one-to-one. The bulk 
of the paper is built around a specific experiment, denoted as experiment 1 ,  
which is presented in figure 5.  The rest of the presentation is devoted primarily to the 
interpretation of these results : figure 8 shows the patterns produced by the stretched 
and folded filament computed under the assumption that the filament is essentially 
passive ; figures 9 and 11 show unravelled pictures of the filaments - figure 9 displays 
the characteristics of the flow field experienced by different parts of the filament 
whereas figure 11 shows the filament’s radius along with the critical radius for 
breakup. The correspondence among these figures is one-to-one. Thus, figure 5(d ), for 
example, can be compared directly with figures 8 ( d ) ,  9(d),  l l ( d ) ,  and so on. It is 
expected that this correspondence will help the reader in getting a quick idea about 
the nature of the agreements and facilitate further comparisons between experiments 
and computations. 

2. Drop breakup in linear flows 
We consider a drop with initial radius r, or a cylindrical filament with an initial 

radius a,,, with viscosity pi and density pi, freely suspended in an infinite volume of 
a second fluid of viscosity pe and density pe with interfacial tension (the subindices 
i and e represent the interior of the drop and the exterior fluid, respectively). In  the 
neighbourhood of the drop or filament - but not near the interface - the velocity field 
with respect to a moving frame fixed on the centre of mass of the drop, denoted X, 

(1) 
is given by 

urn = L .x + higher-order terms, 

where L = L (X, t )  = ( V U ) ~  is in general a function of time dictated by the macroscopic 
flow (we will refer to the flow expression (1) as a microjiow associated with X ) .  Both 
fluids are assumed to be Newtonian and incompressible, and we assume as well that 
both the translation and rotation in the moving frame do not generate noticeable 
additional body forces and that the Reynolds number with respect to the droplet is 
small. Under these conditions the governing equations reduce to 

VPm = p m  V2um, V -  urn = 0, m = i, e, (2) 
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and the appropriate boundary condition far from the drop is 
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v e + v c o =  L - x  as IxI-tco. (3) 

0, = V i ,  (4) 

(c- T,).n = anVan. ( 5 )  

The velocity is continuous at  the drop surface S = S(x, t ) ,  

but the stress suffers a jump in the normal direction, n, owing to the interfacial 
tension, cr, 

The relevant parameters governing the behaviour of the system are the capillary 
number, Cad = G,u,rd/cr (G = 101, where D = $[f +fT]), which measures the relative 
importance of viscous and interfacial tension forces, the viscosity ratio, p = ,ui/,ue, 
and the initial geometry of the drop. 

The above equations contain no explicit time dependence. This implies that the 
velocity field a t  time t is determined by the drop shape and the instantaneous value 
of the imposed flow. In  turn, the drop shape at time t is uniquely determined by the 
initial condition and the flow history, which in our case, is dictated by a (macroscopic) 
chaotic flow. The effect of the local flow on the deformation of a filament with 
orientation m can be quantified in terms of the mixing efficiency e,, 

(6) e,  = (D:mm)/G = u,/G. 

In general, e, varies erratically in chaotic regions and it is nearly time-periodic in 
regular regions (Ottino 1989). We shall have more to say about the behaviour of e, 
and G in $3.2. 

In general, theoretical studies of drop deformation and breakup have been 
restricted to linear flows with constant L or to cases where f changes discontinuously 
(Stone & Leal 1989b). Studies can be divided into those dealing with drops with small 
deviation from sphericity (small-deformation analyses), and those dealing with 
highly elongated drops (large-deformation analyses). Since our study is closely 
related to capillary breakup of highly elongated drops (often referred to as fluid 
filaments or threads), we will focus entirely on the analyses of deformation and 
breakup of liquid threads. 

Roughly speaking, a drop can be continuously stretched to form a ‘long’ liquid 
cylinder when its capillary number, Cad, exceeds its critical value, Cad, ( = Gpe rd/cr, 
the subscript d denotes ‘drop I). Bentley & Leal (1986) have experimentally obtained 
the values of Cad, , for a wide range of viscosity ratios ranging from pure-staining flow 
to simple shear flow. Once a drop is stretched to form a long thread, the breakup 
process is governed primarily by capillary waves. Most studies have been restricted 
to quiescent and axisymmetric extensional flow, and with some approximations, to 
shear and full three-dimensional linear flows. Thus, for example, within the confines 
of linear stability theory, the effects of viscosity ratio and disturbance wavelength on 
the disturbance growth rate and resulting drop size distribution are examined by 
Tomotika (1935), Rumscheidt & Mason (1962), and Lee & Flumerfelt (1981) for the 
case of quiescent fluids, by Tomotika (1936), Mikami, Cox & Mason (1975) for 
droplets in a shearing flow, and by Khakhar & Ottino (1987) for filaments in a linear 
three-dimensional flow. The results of these studies can be condensed in terms of a 
critical capillary number for the breakup of the filament, Cu,,, (= G,ueac/a), where 
the subscript f denotes ‘filament’. 

A combination of these ideas provide a suitable starting point in the understanding 
of breakup in chaotic flows discussed in $4.2. For example, in order to study the 
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breakup of a stretched and folded filament, we follow subsegments, labelled by X, as 
they are convected by a population of microflows, L(X, t ) .  For every location Xthere 
is a corresponding critical capillary number Ca,,, such that instabilities in a 
subsegment with mean radius a, and capillary number Ca, ( = Gpe a,/(.) decay if 
Caf > Ca,,,, or grow if Ca, < Cue,, (equivalently the ideas can be phrased in terms of 
the mean radius a, and the critical radius a,, i.e. if the radius is below some critical 
value a, the amplitude grows). 

Let us consider the implementation of these ideas in more detail. Assume an 
infinitely extended filament of radius a in a microflow L * x. The radius of the filament 
is given by 

where z is a coordinate along the filament, and ef(z) is a small varicosity due to small 
disturbances (it can be argued that the asymmetric variation due to shear is small 
(Khakhar & Ottino 1987) and accordingly we neglect such effects to simplify the 
analysis). Typically f(z) is assumed to have a sinusoidal form (Tomotika 1935) 

(8) 

where A is the amplitude, k = 2n/A  the wavenumber, and A the wavelength. An 
analysis based on Mikami et al. (1975) and Khakhar & Ottino (1987) gives that the 
dimensionless wavenumber, x = ka,, as 

a = U,+€f(Z),  (7) 

f ( z )  = A cos ( k z ) ,  

x =  -&? x 
2 ,  

and the amplitude as 
(9) 

where Ca, = G,ueam/u, xo is the initial wavenumber, and #(x,p) and #’(x,p) are 
rather complicated functions of the wavenumber and viscosity ratio. Notice that 
stretching rate e,  enters as an input in all equations. In our case u, or e, are typically 
complex functions of time. However, in order to simplify matters, we will assume 
that eA is constant (> 0). 

A convenient way of looking at the evolution of disturbances in the filament is in 
terms of the magnification M which is defmed such that 

In @ / A , )  for x < x,, A > A, 
0 for x > x,, 

M = {  

where A,  is the amplitude of disturbances due to thermal fluctuations and x, is the 
critical wavenumber (i.e. the wavenumber such that disturbances are changing from 
decaying to growing). Following Kuhn (1953), the value of A,  is obtained as A,  = 
[21kT/(8ng c)]:, where k is Boltzmann’s constant, and T the absolute temperature 
(this yields values of A, in the range 10-7-10-8 cm; other authors (Rumscheidt & 
Mason 1962) use higher values in the range 10-5-10-6 cm). The dynamics of the 
growth of disturbances leading to the breakup of the thread may be visualized in 
terms of figure 1, in which both the mean radius of the filament, a,, and the 
magnification of the disturbances, M ,  are plotted for various xo as a function of time. 
There is only one optimum wavenumber, denoted z ~ , ~ ~ ~ ,  that corresponds to the 
maximum rate of growth. According to this picture breakup occurs when the mean 
radius, which decreases with time due to stretching, equals the amplitude of 
disturbance A corresponding to xO,opt (i.e. when M crosses with In (a,/A,)). 
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Time 
FIQURE 1. Magnification of disturbances, AIA, ,  in a linear flow for a fixed value of shear rate G ,  
stretching rate e,, viscosity ratio p ,  and different initial wavenumbers. The straight line is the 
dimensionless mean radius, a,/A,, versus time for the same conditions. The intersection of the 
magnification corresponding to the optimum dimensionless wavenumber, qOpt, and the straight 
line gives the point of breakup. Note the definition for the time of breakup t,, the critical radius 
a,. 

It is illust,rative to indicate how to obtain the optimum wavenumber, xo,opt, and 
the critical wavenumber x,. The computational steps are as follows: 

(i) input the parameters p ,  eA, Ca,, a,/A,; select a tolerance E ;  

(ii) guess or input (z0)J > l) ,  and compute M and In (a,/A,) ; 
(iii) check ifM crosses with In (a,/A,) ; if yes, record the time required for breakup, 

t,, if not, increase x, and return to step (ii) ; 
(iv) calculateM at  t, for a range of x,, and pick the new xo, (z,)$+~, that corresponds 

to the largest M ;  if (x,)(+~ - ( x ~ ) ~  > E then return to step (ii), if (x,),,, - (xO)t < E 

The solution xO,opt corresponds to the shortest breakup time; therefore the 
disturbance with wavenumber xo, opt is magnified the fastest. On t$e other hand, the 
critical wavenumber x, is obtained by means of the following conditions : 

then x0,opt = (xo)$+1' 

and 

Finally, the critical radius of the filament, a,, is related to the critical wavenumber, 

(14) 
xc, by 

a, = a,(x,/x,, opt)+> 

where a, is the value we input in step (i) above. We are now in a position to compute 
Ca,, , and a,. Curve-fitting of computational results gives that 

(15) a,(cm) = (37.8f3.8) 10-4eA-0.89p-0.44 (a/peG)X, 
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FIGURE 2. Streamlines in the flow between eccentric rotating cylinders. (a) vin > 0, v,, = 0. 
(b)  vi, = 0, v,,, > 0. In both case8 rin/rou, = 4, eccentricity/r,,, = 0.3. 

where 0.84 < x < 0.92 for < p < lo2; (p ,G/a )  is in cm-l and A, is taken to be 
lo-' em. Equation (15) indicates that the critical capillary number for the filament, 
Ca,, , ( = Gp, a,/cr) is typically much less than one and less than Cad, ,. Note that (15) 
is obtained assuming e, is constant and positive. Given the nature of the assumptions, 
comparisons between a, and a, are restricted to regions where e, > 0, and are 
warranted provided that the timescale of variations in the imposed flow field, de,/dt, 
is slower than the timescale of the fastest growing capillary waves, dA/dt. 

3. Flow system, kinematics, and experimental techniques 

3.1. Journal-bearing JEow : apparatus and jluids 
The journal bearing consists of two eccentric rotating cylinders moving in the same 
or opposite directions with constant or time-varying angular speeds win and vOut. At 
low Reynolds and Strouhal numbers the flow is two-dimensional and the 
instantaneous stream-function portrait depends only on the geometry and the ratio 
win/wOut. A large variety of two-dimensional flows can be generated depending on (i) 
the ratio of the radii of the inner cylinder to the outer cylinder, (ii) the distance of 
the centre of the inner cylinder from the centre of the outer cylinder (eccentricity), 
and (iii) the ratio of velocities of the inner and outer cylinders. Several alternative 
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1 period -4 

0 31.5 112.5 187.5 262.5 300 

Time (s) 

FIGURE 3. Discontinuous velocity protocol corresponding to experiment 1 in $4.1. The 
designation (a), (b ) ,  ... , etc. corresponds to the photographs in figures 5 and 8. 

versions of analytical solutions for the stream function are available ; here we use the 
one due to Wannier (1950) which has the advantage of being given in (x, y)- 
coordinates. Streamlines of steady flows with only one wall in motion are shown in 
figure 2. If the flow is made time periodic, the flow pattern changes with time so that 
the streamlines at  time t cross the streamlines at time t + At and, therefore, chaos is 
likely (Ottino 1989). In particular, the system produces chaos when both cylinders 
are forced in a time-periodic manner (both vin and vout have identical period T in 
everything that follows). The various types of forcing motions, vin(t) and wout(t), are 
quantified in terms of the rotation of the inner or outer cylinder per period, 

For simplicity, the ratio of Bin and Bout will be kept constant, and a discontinuous 
velocity protocol, where only one cylinder is in motion a t  any particular instant of 
time, will be used (see figure 3 : the locations denoted (a ) ,  (b) ,  . . . , ( 1 )  correspond to the 
snapshots taken in figures 5 and 8). 

Chaos in the journal-bearing flow was first experimentally and computationally 
studied by Chaiken et al. (1986) and further computational studies are reported by 
Aref & Balachandar (1986). The emphasis in both of these works was on 
demonstrating that chaos was indeed possible in a physically realizable low- 
Reynolds-number flow. More recently, Swanson & Ottino (1990) used this flow to 
compare several computational and experimental techniques to predict the mixing 
of passive tracers when the mixing is widespread and occurs in only a few number of 
periods. It should be noted that in the case of mixing of passive tracers in creeping 
flows, the actual wave form of the cylinder velocities is not important, and as long 
as win = 0 when wOut + 0 and vice versa, only their displacements Bin and Bout affect 
the results (Swanson & Ottino 1990). However, if the fluids are immiscible, time 
enters explicitly in the evolution of the drop filament and the exact form of both wh(t)  
and vout(t) becomes important. 

The experimental apparatus is the same as the one used by Swanson & Ottino 
(1990). The bottom of the outer cylinder is transparent so that pictures of the whole 
flow area can be obtained from below. The speed of the motors is monitored by a 
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(a) 
Fluids 

A No. 40 oil 110000 1.02 
B 1 -Bromonaphthalene O(10') 1.49 

Corn syrup 1632 32600 1.42 2.87 x lo7 T-3"3 
Fombline YL Vac 06/6 120 1.88 
Mineral oil 35 0.88 

( b )  
Drop fluid no. PI(C.P.S.)'"' P@,/P€.)'a) u(dyne/cm) Cc(Wb' 

2 (0.67A + 0.33B) 13200 0.40 9.5 2.12 x 105 T-2.35  

1 (0.90A+0.10B)(C) 91OOO 2.8 9.1 4.64 x 105 T-'.88 

3 (0.50A + 0.50B) 2 100 0.064 10.0 2.36 x 104 T-2.22 
4 (0.33A + 0.67B) 330 0.010 10.4 1.18 x lo* T-'.14 

(') T = 23 "C. 
(b) The equations are valid for 20 O C  < T < 30 "C, T is in "C. 
(c) Volume fraction. 

TABLE 1. (a) Fluid properties; ( b )  properties of fluid systems used 

computer and the angular displacements are controlled to 99 YO accuracy. The radius 
of the outer cylinder, rout, is 7.62 cm and the inner cylinder, rin, is 2.54 cm. The 
eccentricity is 2.29 cm. 

The magnitude of inertial terms is given by the Reynolds number, Re = 
pev(rout -rin)/,ue, and Strouhal number o f  the apparatus, St = (rout-rin)/wT, where 
v = max (rinvin, routvout) and T is a period of oscillation for the velocities. The 
Reynolds number corresponding to a drop of size r,  is given by Re, = piGr:/pi. In  
a typical experiment, Re is about 

The suspending fluid used in the experiments is corn syrup 1632 (Corn Products of 
Englewood Cliffs, NJ). The drop fluid is a mixture of no. 40 oil, an oxidized castor 
oil available from CasChem Inc. of Bayonne, NJ, and 1-Bromonaphthalene (Aldrich 
Chemical). These fluids have been reported to be Newtonian (Bentley & Leal 1986; 
Rumscheidt & Mason 1961). 

The procedure to make the fluids for the drops is as follows. First, organic dye (Oil 
Blue N, or Oil Red 0, Aldrich Chemical) is dissolved in 1-Bromonaphthalene. Then 
some specific amount of 1-Bromonaphthalene is mixed with oil no. 40 until the 
mixture becomes homogeneous (several days). Depending on the volume fraction of 
1-Bromonaphthalene, the viscosity of the mixture can be varied from lo1 to lo4 cP. 
Buoyancy effects due to density difference between the bulk and the immersed fluid 
cannot be completely eliminated ; they are however relatively unimportant, 
especially when the drops are small (rd < 0.5 mm). During the course of an 
experiment (approximately 20 min), large liquid drops (approximately 1 mm in 
diameter) might rise about 0.5cm in the vertical direction. Bottom effects are 
minimized by floating the working fluid on a denser and less viscous fluid 
(perfluoropolyether vacuum-pump oil ; Fomblinm YL Vac 06/6, Aldrich). This 
bottom fluid is more convenient than the fluid used in the previous experiments 
(Swanson & Ottino (1990) used 1-Iodo-3-methylbutane) ; it is much denser, 
transparent, non-volatile, and about 85 % recoverable when cleanup of the apparatus 
is called for. A thin layer of mineral oil is poured on top of the corn syrup to inhibit 
crystallization. Table 1 (a )  shows the properties of the fluids used. The viscosities of 
the fluids are measured using a shear-stress rheometer (Rheometrics) and a rotary 

St is about lO-l ,  and Re, is about lo-' to 
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viscometer (Cole Palmer). The interfacial tension of the drop fluids is estimated from 
the drop deformation experiments in a Couette flow using linear theory (Taylor 
1934). Table 1 (b)  shows the values of viscosities as a function of temperature for the 
drop fluids used. 

3.2. Kinematics in regular and chaotic regions 

The character of the velocity field in the neighbourhood of a moving particle, which 
acts as forcing to the evolution equations for the filament (equations (9) and (lo)),  can 
be characterized in terms the stretching rate, a,, and the efficiency e,, which are 
defined as follows (Ottino 1989). The rate of change of a material filament dx with 
initial length d X  is given by - 

dx = dX*Vv, (17) 

i / A  = D:mm, (18) 

and the rate of change of length stretch, h (= Idx(/(dXI) is given by 

where m = dx/ldxl and the overdot represents the material time derivative. The 
Lagrangian history i / h  = a,(X, M, t )  is called the stretching function, and is in 
general a function of initial orientation, A4 = dX/ldX(, and initial location, X. The 
stretching efficiency, e, = e,(X, M ,  t )  is defined as 

e, = (i /A)/(D:D)i = a,/G < 1. (19) 

The eficiency e, is constant in hyperbolic flows, and has a maximum value of 1 / 4 2  
in two-dimensional flows and (2/3); in three-dimensional flows. On the other hand, 
the efficiency in shear flows, and in fact in all steady bounded two-dimensional flows, 
decays as l / t  (Ottino 1989). Of more interest to us is the behaviour of a, and e, in 
chaotic flows. There are two clearly distinguishable types of behaviour : within 
chaotic regions a, and e,  vary erratically, have nearly constant long-time average, 
and the length stretch is exponential in time. On the other hand, within regular 
regions, a, and e,  vary in a nearly time-periodic manner and the length stretch is 
linear in time. 

Another way to make evident the shear-like vs. elongational-like character of the 
local two-dimensional flow, is in terms of K = (D-SZl/lD+Ol, where 52 = $L-LT].  
The parameter K is indifferent, i.e. it does not depend on the frame used, and 
ranges from K = + 1 for orthogonal stagnation flow to K = - 1 for pure rotational 
flow (K  = 0 corresponds to simple shear flow). In general the connection between a,, 
e,, G ,  and K is rather complicated and only a few points will be highlighted here. 

Figure 4(a-e) illustrates typical flow histories, a,, e,, G ,  and K ,  in the 
neighbourhood of two fluid particles placed in regular and chaotic regions of the flow. 
The behaviour of a, and e, depends on the initial orientation ; on the other hand the 
histories of G and K depend only on the instantaneous placement in the flow. It is 
apparent that a fluid filament placed in a regular region experiences a nearly periodic 
history of stretching and compression, alternating positive and negative values of a,, 
whereas a fluid filament in chaotic regions experiences a complicated time history 
with a positive time average. Note also that the rate of stretching in chaotic regions 
quickly becomes independent of initial conditions. Similar conclusions can be drawn 
from the behaviour of e,. In general, there is a wide distribution of stretching 
histories within the chaotic regions of the flow. However, most of these effects 
become evident only after a large number of periods and for the purposes of our 
discussion they will not be considered here. 
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3.3. Photography and digital image analysis 
All photography is taken using a 35mm camera (Nikon F3) with a micro lens 
(Nikkor 200 mm) with 4 x magnification. A scale is placed in the fluids for a more 
precise size measurement. The types of films vary (Kodak Tmax or Ektachrome) 
depending on the objective of the experiment. We use Kodak F/M paper to make 
B/W prints or Ilford Cibachrome paper to make colour prints. The size of an object 
in the final print can be enlarged up to 50 x its original size without apparent loss 
of resolution. 

Photographs of the droplets are digitized and the drop size is measured using the 
Image-Pro Software from Media Cybernetics, Inc. Enlarged photographs from each 
set of experiments are cut into small pieces (0( 100)). Each of these small photographs, 
which has about 1Ck50 drops, is grabbed by the digital camera and projected to a 
512 x 480 pixel TV screen. This procedure is carried out to ensure that the smallest 
drops are still represented by a minimum of O( 10) pixels. Small droplets present some 
problems due to contrast (primarily due to the small amount of dye contained in the 
drops and three-dimensionality). To overcome this problem we define some threshold 
value for the intensity (i.e. between 0 and 255 for B/W); if a pixel has a value above 
or below the threshold it is made completely white or black, respectively. In  
experiments where we need to measure the size of very small droplets, satellites, and 
sub-satellites, or to capture the dynamics of the satellites formation, we resort to a 
stereomicroscope with magnification up to  63 x . This procedure is used to  obtain the 
results presented in figure 7. 

4. Results 
4.1. Drop breakup in a chaotic flow : a typical case 

Experiment 1 corresponds to a discontinuous counter-rotating velocity protocol, 
shown in figure 3, with vin = (rout/rin) vOut = 0.50 rad/s; these conditions correspond 
to a globally chaotic flow. The drop placed in the bulk fluid corresponds to the fluid 
no. 3 shown in table 1 ( b ) .  Since the results that follow here are representative of a large 
number of repeated experiments, a comment about the reproducibility of results 
seems in order. To the extent that  it is impossible t o  place a droplet in exactly the 
same location twice, and because chaos magnifies the effect of errors in the initial 
conditions, it is rather hopeless to  expect that two experiments will produce exactly 
the same number of drops, especially when the experiment generates thousands of 
drops, or that the thousands of droplets will be located in precisely the same spatial 
locations. All these features are small-scale details. Large-scale features, however, are 
highly reproducible. Large-scale features are, for example, the spatial distribution of 
the filament, the location and times where breakup occurs, the placement and 
nesting of folds and the mode of breakup associated with them, as well as information 
of a more average character, such as the final drop size distribution generated after 
the breakup. 

The dynamics of elongation and breakup of a drop placed in the flow are shown in 
a series of pictures in figure 5(a-1) (plate 1). Initially, a drop with a radius 
approximately 0 . 4 4 . 5  cm, is injected about 5 cm below the surface of the bulk fluid 
by means of a syringe/pipet (figure 5a ,  t = 0 s). First, the inner wall moves clockwise 
for 6x rad (Oin = 12x rad) and the drop is translated and stretched by the flow. Then 
the inner wall stops, the outer wall starts moving counterclockwise (Oout = 47t rad). 
The drop, which has extended into a ‘fat fluid filament’, continues to be elongated 
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FIGURE 5. Dynamics of elongation, folding, and breakup of a drop placed in a globally chaotic flow (experi- 
ment 1). The viscosity ratiop is 0.067. The times corresponding to photographs (a-l) are shown in figure 3. 
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FIGURE 6. (a, b) vpical behaviour associated with breakup of U- and Vtype folds in a quiescent fluid. (c) 
Elongation and folding of a drop (p = 0.40) at the end of period 1; then the flow is stopped. (d) Breakup pro- 
cesses along the filament 20 s after the flow is stopped. (e) The drop fragments after the breakup is complete. 
The corresponding computer-generated picture of the unbroken fluid filament is shown in v). The colour 
scale corresponds to the amount of length stretch: white indicates maximum, red minimum. 
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FIGURE 8. patterns produced by the stretched and folded filaments corresponding to experiment 1. 'hvo 
colours are used to difkrentiate the stretching sign: red corresponds to positive stretching (e ,X ) .  blue to 
negative stretching (e,<O). The b e g i i  and end ofthe filament are denoted X, and X 2 ,  shown only in (b) ; 
the same notation is used in figures 9 and ll. 
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FIGURE 12. Comparison of the locations of breakup obtained in the experiments versus computations: (a) 
corresponds to figure 5(e), (b) to 5 0 ,  and (c) to 5@). The computational results are shown in the left column. 
Two colours are used to differentiate the stretching sign: red corresponds to positive stretching (e,X), blue 
to negative stretching (e,<O). Yellow corresponds to the region where a,<a,, and e,X. The figures in the 
right column show a magnified view of the development of the instabilities, the approximate location of which 
is shown by the dashed box in the top middle column. 
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and breakup occurs at  one end of the filament by means of a mechanism similar to 
end-pinching (arrow b l ,  figure 5 b ,  t = 80 s) ;  however, the number of droplets 
produced by this mode of breakup is rather insignificant. Once the initial drop has 
been stretched by a factor of 20 or so, the rate of deformation approaches that of a 
passive material line and the rate of length generation is exponential (please, see 
figure 10). 

When the outer cylinder stops and the inner wall moves in the clockwise direction 
(figure 5 d ,  t = 120 s ) ,  the filament gives birth to two new folds identified by arrows 
d l  and d2. The swelling around the folds suggests that the filament is being 
compressed by the flow. The folds evolve into two qualitatively different types: a 
pointed V-shape fold (el), and a rounded U-shape fold (e2) shown in figure 5 ( e )  
( t  = 140 s).  There is a noticeable development of capillary instability slightly to the 
right of the tip of the U-shape fold and a t  the end of one period, t = 150 s (figure Sf), 
the capillary instabilities near the U-shape fold have grown larger and breakup is 
about to occur (arrow fl) .  

During the flow, disturbances along the surface of the stretched filaments, away 
from folds and ends, are damped in spite of the small radius of the filaments. 
However, given enough time (under flow), the radii of the threads decrease further 
and when interfacial tension becomes important, disturbances magnify. These 
disturbances are not yet present in figure 5(b-e) but a magnified view of figure 5 ( f )  
shows unmistakable signs of capillary instabilities (arrow f2). Subsequently 
breakup occurs along the stretched filament (arrow g l  in figure 5g, t = 160 s) as well 
as near the U-fold (arrow g2). Shortly thereafter capillary wave instabilities appear 
in various regions of the filaments and fragmentation occurs rather rapidly 
afterwards (figure 5h, t = 190 a). 

The majority of breakups are caused by the growth of capillary disturbances on 
the surface of extending fluid filaments and this mechanism gives rise to the 
formation of droplets of widely different sizes. Between two large drops there is a 
satellite drop (see figure 5h)  ; in the neighbourhood of the satellite drop, there are sub- 
satellites, and between sub-satellites, sub-sub-satellites, and so on. The ratio of radii 
between the mother drops and the smallest satellite, observed under a stereoscope, 
can be as high as three orders of magnitude (some pictures of satellites, sub-satellites, 
and so on, appear in Tjahjadi & Ottino 1990). 

On the other hand, some of the largest drop fragments are a consequence of folds. 
Figure 6(a, b)  (plate 2 )  shows a magnified view of the typical breakup processes 
associated with U- and V-type folds. Often folds produce even bigger fragments. 
Consider for example the evolution of the tip of the V-shape fold in figure 5 ( e )  (arrow 
e l )  as it extends into a slender filament (arrow 83, figure 59, t = 160 s). When the 
inner wall stops and the outer wall starts moving the fold is compressed and pinches 
off a t  the juncture where the two upper branches meet the one lower branch (arrow 
hi ,  figure 5 h ,  t = 190 s). The separated lower branch of the Y-fold - a slender drop 
about 2 cm long - and its neighbouring fluid filaments arc folded by the ‘new’ flow. 
Figure 5( i -k)  shows the slender drop being compressed (arrows i l ,  j l )  to about one- 
third of its initial length, reoriented, and stretched again. During the motion, the 
ends of the slender drop become bulbous; figure 5 ( k )  (arrow k l )  shows that these 
bulbous ends are about to pinch off from the nearly cylindrical midsection (this is 
similar to the end-pinching studies of Stone & Leal 1989a, b) .  The remaining 
cylindrical piece, as well as other pieces of fluid cylinders in figure 5 ( k )  (arrows k2 
and k3) undergo a similar stretching and folding process. 

Other large new drops are the result of breakup of a relatively fat filament, the 
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pinch-off of a bulbous end or tip of a fold (one can observe many such droplets in 
figure 5 k ) .  These new drops might stretch further and develop droplets with two 
bulbous ends (e.g. arrow 11, figure 51, t = 300 s ) ;  this mechanism is referred to as 
necking (Rumscheidt & Mason 1961). In  turn, these droplets give birth to two drops 
with a string of satellite droplets in between. This mode of breakup, which becomes 
important after 2 periods or so, continues until no more droplets can be stretched and 
broken anywhere in the flow. When the breakups stop, say after about 10-15 periods 
(t = 1500-2250 s), we say that the drop size distribution has finally reached its 
equilibrium distribution. The analysis of such a distribution is reserved until $84.3 
and 4.4. 

It is rather remarkable that in spite of all of these small-scale processes the motion 
of the centre of mass of the droplets is almost completely dictated by the macroscopic 
flow. A clear indication of this fact is provided by a comparison between figures 5 (f ) 
and 5(Z). The large U-fold g2 is clearly seen in 12; even though several stretchings 
and foldings have occurred, the nesting of the broken striations is unmistakable. This 
type of nesting is characteristic of passive tracers in two-dimensional chaotic flows 
(Leong & Ottino 1989). 

4.2. Comparison with numerical studies 
In this section, we attempt to develop computational methods which provide some 
prediction of the experimental results. Ideally we would like to be able to solve an 
initial-value problem : predict how and when a large fluid drop in a chaotic flow will 
stretch, deform, and break, and if it does indeed break, to compute the size of the 
resulting drop fragments. However, such analysis involves tracking of thousands of 
deformable droplets and their hydrodynamic interactions and, by today’s state-of- 
the-art computing standards, as well as by a comparison with rather simpler 
problems such as the evolution of a passive tracer in a chaotic flow (Franjione & 
Ottino 1987), or the precise computation of end-pinching of an extended drop (Stone 
& Leal 1989a), the situation appears to be rather hopeless. The question is: Can we 
make simplifying assumptions and still obtain reasonable predictions 1 The answer 
appears to be yes. 

The key assumption is to treat the motion of the centre of mass of the filament as 
if it were passive. In  the beginning of the simulation, we pick the location of the 
initial condition -a  blob consisting of hundreds of points - to match that of the 
experiment. Then we restart the motion and let the points be convected by the flow. 
Even though this is a gross approximation, the agreement after the drop is 
considerably extended is rather good (in experiment 1 this point is reached in about 
10-20 5). The next step is to assign a radius to the computed filament corresponding 
to the experiment itself (using an image analyser). Based on the locations of the 
previously computed points, we make up a set of new points Xi which constitute a 
line that goes through the centre mass of the filament (from now on we will refer to 
the ends of the filament as X ,  and XJ. Each piece of the filament is assigned a (mean) 
radius, aml = a,(X,), and an initial orientation, mi = m(X,) proportional to the 
distance 1Xi+,-XJ. This creates an array of numbers, amt and mi, representing the 
starting conditions for every segment. The radius and orientation of the ith segment 
evolves as 

d,(/aml = - iD : m, m,, (20) 

mi = L.m,-(D:m,m,)m,.  (21) 

In a chaotic flow the distance ds, = - xil increases exponentially and folds occur. 
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x, x* 
FIGURE 7. Radii of the droplets in figure 6(e) versus the computed filament thickness aa we unfold 
the string of droplets and the filament from X ,  to X ,  ( X ,  and X ,  are shown in figure 6e). Each 
droplet is represented by the symbol 0; the simulation is represented by the solid line. 

In order to capture folds and variation of the radius along the filament, a fluid 
segment which has stretched such that da,/ds, > e (where E is a small number, we 
pick e = 0.01) is resegmented and a new radius is obtained by linear interpolation. 
We use the ad hoc model presented in 92 to determine the stability of the fluid 
segments provided that they are not located near the ends or folds, where the model 
breaks down. Then the radius of a fluid segment, a,* = am(& t )  is compared with the 
critical radius, act = ac(X,, t ) ,  at every time increment. 

How do these predictions compare with the experimental results? There are 
several ways to test the agreement. A direct comparison between the radius profile 
of a fluid filament while it is being convected by the flow with the numerical 
predictions is one possibility. Another possibility is to stop the motion, let the 
unperturbed filament break, and measure the sizes of the generated drops. Figure 
6(c-e)  (plate 2) shows an experiment with p = 0.40. Everything else, including the 
bulk fluid, is the same as in experiment 1 (p = 0.067). Figure 6 ( c ) ,  which looks very 
similar to figure 5(f ) ,  is taken immediately after the flow is stopped, t = 150 9. The 
only qualitative difference between the two photographs is that figure 6(c) does not 
show any visible sign of capillary disturbances, whereas in figure 5 (f ) there are some 
instabilities developed near the U-fold. This is not surprising since the characteristic 
velocity for the interfacial-tension-driven changes is given by u, = a/,uu,(l + p )  ; 
hence the instability growth on the filament with higher viscosity ratio is delayed. 

After the flow stops, figure 6 ( c ) ,  breakup occurs starting primarily in the thinner 
parts of the filament (O(10) s). Then, as expected, it slowly propagates to the thicker 
regions of the filament (O(100) s) (figure 6 d ) .  Figure 6(e)  shows the result after all 
fluid filaments are broken. The sizes of the drops as well as their distances from one 
another are measured with the aid of a stereomicroscope and the distances along the 
length of the filament recorded (in carrying out these measurements we do not count 
the satellite drops but use them only as reference points). 

Figure 6 (f ) shows the corresponding computer-generated picture of the unbroken 
fluid filament. The thickness of the filament, which is shown to scale, is related to the 
amount of length stretch, which is shown according to a colour scale. Notice that U- 
and V-folds have been subjected to much less stretching than other parts of the 
filament. Other computations seem to indicate that this is rather common. In  general 
the agreement between the results of figure 6 (c, f )  is good. Figure 7 shows the radii 
of the droplets-each represented by the symbol 0-and rescaled according to 
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FIGURE 9 (a-h). For caption see facing page. 
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FIGURE 9. Kinematical histories along the filament corresponding to experiment 1.  The first frame 
(a), purposely left blank, corresponds to the initial condition. ( b l )  Values of both e, (solid line) and 
G (dashed line) are shown. The discontinuous solid lines parallel to the z-axis correspond to the 
locations where the stretching is negative. 

equation (14) - versus the computed filament thickness, represented by the solid line. 
There is total of 1111 mother drops. With a few exceptions, the agreement is 
satisfactory. 

It is apparent that we are able to follow a fluid segment and keep a fairly accurate 
track of the evolution of its radius provided that: (i) it is not located near the ends 
of the filament, and (ii) it is not near the folds. Figure 8(a-Z) (plate 3) shows patterns 
produced by the stretched and folded filaments tailored to mimic the experiments of 
figure 5(a-1). The filament is coloured according to the stretching experienced by 
different parts of it : red when the stretching is positive, blue when it is negative. The 
quantitative companions of these photographs, which show the values of both eh and 
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FIGURE 10. Length of the filament as a function of time corresponding to the computation 
shown in figure 8 (compare with experiments in figure 5). 

G as we unfold the filament from X, to X,, are shown in figure 9 ( a d ) .  Figure 10 shows 
the length of the filament from X, to X, as a function of time corresponding up to  
figure 8 (1 )  ; the length stretch is approximately 2 x lo3. Experiments, figure 5 ,  show 
that the filament can be stretched approximately a thousand times before breakup 
becomes apparent (figure 59) .  

The matching between the orientations of the unbroken liquid threads (figure 5 a-f) 
with the simulation (figure 8a-f) is good and confirms that the drop stretches as a 
material line. Most of the small droplet fragments which result after the breakups 
(figure 5g-k) can be superimposed reasonably well on top of the computer-generated 
patterns shown in figure 8(g-k) .  Some of the larger droplets, however, ‘stray off 
course’ (see figure 51). Our experimental observations suggest that this is related to 
asymmetries in the drop shapes. A periodic restoration to symmetry or a combination 
of asymmetric deformations results in a migration of the centre of mass of the drop. 
A small deviation, given the fact that  the flows are chaotic, results in a large 
displacement with respect to well-behaved former neighbours. 

For the first few photographs (figure 8a-f), it is possible to trace the filament along 
its length and identify the values of e,  and G shown in figure 9 (a,-f). Figure 9 (a)  is 
purposely left blank to  match the initial condition ( t  = 0 s, no deformation). I n  
general, the filament experiences a complex variation of stretching and compression 
along its length. For example, figure 9 ( b )  shows that there are two segments, denoted 
S,, and Sb2, where the fluid thread is compressed (e, < 0). These changes of stretching 
sign are important. The rate of change of stretching along the filament, de,/ds, varies 
depending on the orientation of the filament with respect to  the local flow L(X,t).  
Since L is approximately uniform near the tip of the fold, i t  is apparent that as the 
filament adopts all possible positions with respect to the eigenvalues of L,  de,/ds 
changes sign. Thus, folds are associated with a stretching-compression transition. 
This is confirmed by an examination of figure 8. I n  fact, an examination of the e,  
profiles gives a good indication of whether or not a filament is folded. Let us examine 
this point more closely. 
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FIGURE 11.  Mean radius of the filament, a, (dashed line), along with its critical radius, a, (solid 
line). The comparison is valid as long as e, > 0 (the discontinuous solid lines parallel to the z-axis 
correspond to the locations where the stretching is negative). Notice that the arrows shown 
correspond to the ones shown in figure 5. 
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Figure 8 ( d )  shows the pattern when the inner wall has just started to move 
clockwise and the filament is adjusting its orientation to the new flow. The 
companion stretching profile in figure 9 ( d )  shows that near Sd2, the stretching eA has 
a local maximum and two minima, indicating that two new folds are about to be 
formed. A more pronounced spike is shown in Sd3 suggesting extreme curvature ; an 
examination of figure 8 ( d )  shows that this piece turns out to be a V-fold. (Note that 
the increase in curvature is due, in part, to the rescaling of the length of the filament. 
Other ways of displaying these results though, do not seem to be as convenient.) 
Figure 9 ( e - g )  shows that S,, evolves into two folds, a V-fold and a U-fold, as seen 
earlier in experiment 1 (figure 5 e - g ) .  Subsequently, when the filaments have been 
elongated by more periods of the flow, the stretching profiles look rather complicated 
(figure 9h-1). However, a closer examination of figure 9(k or Z), reveals that the 
variation of e, and G along the filament consists of identifiable repeating units. The 
reason for this behaviour is that neighbouring nested filaments experience nearly 
identical flow histories. 

The information contained in figures 8 (a-Z) and 9 (a-Z) provides explanations for 
many of the results seen in experiment 1. For example, figure 5(f)  shows that a 
relatively thick fluid thread fractures unexpectedly a t  a point marked by arrow f l .  
Figure 8 (f ) indicates that the instability is growing precisely a t  a location where e,, 
is negative, i.e. the filament is being compressed. Furthermore, an examination of the 
history experienced by this particular segment reveals that the filament has 
experienced relatively low values of shear rates (figure 9d-f ). Therefore, the flow near 
the filament has not contributed much in damping the disturbances and, in fact, we 
can envision that the fluid near the fold is nearly stagnant. The characteristic 
velocity for the interfacial-tension-driven changes, given by u, = u/,u,(l + p ) ,  is 
larger than the characteristic velocity of the flow, denoted by uG = GZ, (1, is some 
characteristic lengthscale of the apparatus). As a result, the interfacial-tension- 
driven motion magnifies the instabilities and breakup occurs. 

Figure 11 (a-h) shows the time evolution of the mean radius of the filament in 
experiment 1,  denoted a, (dashed line), along with its corresponding critical radius, 
a, (solid line), computed as indicated in $2. The discontinuous solid lines parallel to 
the x-axis indicate the locations where e, is negative (compression). Figure 11 (a-h) 
shows that the radius a, is continuously decreasing whereas the critical radius a, 
fluctuates depending on the local values of e, and G. It is possible that during the flow 
the radius a, is less than a, for a short period of time ; in such a case any instabilities 
which manage to grow might be damped again. Eventually the radius a, might be 
less than a, for a sufficient time to cause breakup. 

The computational results are consistent with experiment 1. No capillary 
instabilities are observed along the filaments before t = 150 s. At t = 150 s (figure 5f), 
a magnification a t  arrow f2, shows that some instabilities are starting to grow (see 
figure 1 I f ) .  A few breakups occur a few seconds later, and since the radius a, is still 
less than a, (figure l l g ) ,  breakups continue to occur (see figure 5g, t = 160 8). The 
exact locations of the breakups, predicted from the simulation, are shown in figure 
12 (a%) (plate 4). The regions where a, < a, are marked in yellow. The comparison 
between computation and experiment is good only for the first few breakups; 
subsequently the end effects of the many pieces of the broken filaments become 
increasingly important and the agreement is lost. 
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4.3. Effects of viscosity ratio 
The results presented in this section correspond to the flow of experiment 1 ; the 
initial conditions are identical as well. The objective of the experiments is to  
investigate the effect of viscosity ratio on modes of breakup. The main results are 
shown in figure 13 and correspond to four different experiments - denoted A, B, C, 
and D - with viscosity ratios p = 0.010, 0.067, 0.40, and 2.8 respectively. The 
superscript following the designation A, B, C, D, corresponds to the end of the period 
in which the picture was taken. Equilibrium drop size distributions, obtained via 
image analysis, are shown in figure 14. 

The most important observations are the following. Low-viscosity-ratio drops 
stretch more passively but extend relatively little, O( 101-lOe), before they break 
producing large droplets. These large droplets may undergo subsequent stretching, 
folding, and breakup. Under identical conditions, high-viscosity-ratio drops stretch 
substantially, O( 102-104), before the break producing very small fragments ; these 
small fragments rarely break again. On the average, we find that the mean drop size 
decreases with increasing p. The equilibrium size distributions corresponding to high- 
viscosity-ratio drops are more non-uniform than those corresponding to low viscosity 
ratios. This is primarily due to the existence of rather large droplets produced via 
fold-pinching or end-pinching, which resist further breakup. 

Some of these results can be rationalized in terms of characteristic times : roughly 
speaking the characteristic time of the flow is t, = l / G  whereas the characteristic 
time of the interfacial-driven motion is given by t ,  = &(l + p ) / v ,  where 6 is some 
characteristic lengthscale (for a drop, 6 = rd, for a filament, = am). In  general, when 
the flow stops, or when G is very small, the motion of the drop/filament motion is 
driven strictly by interfacial tension. But when G is finite the shear response can be 
significant enough to counter interfacial tension forces. The ratio t , / (  1 + p )  t, is the 
capillary number (the factor (1 + p )  is added to be consistent with the definition of 
the capillary number given by Bentley & Leal 1986 and others). In our case we have 
access to both G and Q (i.e. the critical radius of a drop or a filament) from the 
simplified model of $9 2 and 4.2. Therefore we can compare the ratio tu/(  1 + p )  t ,  with 
a critical capillary number in order to determine whether a drop/filament is going to 
extend or break. For a droplet in a quasi-steady flow this piece of information is 
already available. Bentley & Leal (1986) obtained experimentally the critical 
capillary number, Cad,,, as a function of the viscosity ratio p and flow type K. 
Similarly, in the case of an extendingfilament we can use the results from 92 to obtain 
the critical capillary number, Ca,, ,, as a function of stretching rate a,, shear rate G, 
interfacial tension, CT, and viscosity ratio p. Naturally, in a complex flow such as ours, 
the parameters K, u,,, and a change in time in a rather complicated fashion (see figure 
4). Nevertheless we can still make useful estimates at particular instants of time by 
comparing the ratio t,/(l+p)t, with the critical capillary numbers Cad,, or Ca,,,. 
Some of these estimates are made below to interpret the experimental results. 

Let us now consider experiments A-D in terms of results obtained for linear flows. 
The size of the initial drops in experiments A-D is fairly large and tu/(  1 + p )  t ,  is about 
7.5. Bentley & Leal show that for K between 0 and 1, and for p between 0.01 to about 
3, Ca,,, ranges from 0.1 to 0.5 (see figure 28 of their 1986 paper). Consequently the 
initial drops extend into filaments. After extension, the drops in the low-viscosity- 
ratio system (p < 1) behave nearly passively. Note, for example, that figure 13 
( AlWl) can be superimposed reasonably well on top of the computer-generated 
patterns of figure 8 (f ). On the other hand, high-viscosity-ratio (p > 1) filaments (for 
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FIQURE 13. For caption see facing page. 
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FIQURE 13. Effect of viscosity ratio on modes of breakup. Experiment A corresponds to 
p = 0.010, B to 0.067, C to 0.40, and D to 2.8. 

example see experiment D) show some noticeable deviations with respect to the 
passive case. Note as well that the amount of time needed to elongate a spherical 
drop is a strong function of t,. The most viscous drop (experiment D) requires 
roughly three times as long in order to achieve the same length as its less viscous 
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counterparts (experiments B, C). Figure 13 (A') shows that in the low-viscosity-ratio 
case (r, = 0.010) significant breakup occurs during the flow. Figure 9 (b-e) shows that 
during the flow some parts of the filament experience a very small C, hence satisfying 
the condition t,/(l +p)t, < Ca,,, (this is another way of saying a, < u,); for 
example, the ratio t,/( 1 +p) t, is 0.076 at the position shown by the arrow in figure 
13(A1) whereas its corresponding Ca,,, is 0.15. 

The length of time required by the instabilities to grow and result in breakup is a 
function of t, (i.e. large t, results in more sluggish interfacial-tension-driven motion). 
This is consistent with our results; the experiments with larger t, - B, C, D - show 
that after one period, with the exception of end-pinching, the filaments have not yet 
fragmented. The development of capillary instability slightly to the right-hand side 
of the tip of the U-fold in figure 13(B') can be associated with tJ(1 +p)t, < Ca,,,. 
Note as well that there are segments satisfying the condition t , / (  1 +p) t, < Ca,, , but 
only for a relatively short time (i.e. t < t,). In such cases the instabilities are not 
given enough time to cause breakup before they are damped again. 

On the other hand instabilities grow when filaments are compressed. Since folds 
are associated with stretching-compression transitions every fold has a region where 
the instabilities are always growing. Breakup at the folds (during the flow) is 
observed in experiment 1 (see for example arrows g2 and h l  in figure 5 ) ,  as well as 
the low-viscosity-ratio experiment in figure 13 (A1) (notice that a great part of the U- 
fold has fragmented, also the tip of the V-fold has broken as well). The instabilities 
at  the folds are not visible in figure 13(C', D1) since the disturbances are damped by 
increasing the viscosity of either phase. As a result, high-viscosity-ratio filaments 
stretch a lot more before breaking resulting in tiny fragments. However, the 
relatively large droplets which are produced via fold-pinching and end-pinching 
rarely undergo any subsequent stretching and breakup (see figure 13D2); these large 
droplets (see figure 13D2') are periodically extended, when t,/(l +p)t, > Cud,,, but 
they relax back to an almost spherical shape when t,( 1 + p )  t ,  < Cad,,. 

4.4. Analyses of drop size distribution 

In order to quantify the equilibrium drop size distribution we took photographs of 
the experiments described in $4.3, enlarged the images, then divided them up in 
50-60 subsections, and digitized the pictures. Very small droplets, possibly satellites 
or sub-satellites, which are not visible through the camera lense are neglected in the 
analyses. However, even when the smallest drops are ignored, the measured drop 
sizes span four decades in volume. This generates a distribution f(V,p), where V 
denotes the volume of the drops and f( V , p )  dV is the number of drops with sizes 
between V and V+dV. Figure 14(a) shows the distributions corresponding to the 
experiments of figure 13 after 20 periods. Each curve corresponds to 150CL2000 
droplets ; the distributions are normalized in such a way that they all have the same 
number of droplets. In order to verify the reproducibility of the results several of the 
runs experiments were repeated. Results corresponding to different repetitions were 
virtually identical. 

The curves corresponding to p = 0.010, 0.067, and 0.40, have similar shapes. On 
the other hand, as might have been expected based on the discussion at  the end of 
$4.3, the curve corresponding to p = 2.8 has a different shape. At equilibrium, the 
sizes of the large drops fall inside an envelope indicated by the dashed line. Any drop 
on the right-hand side of the envelope will break again. The plot shows that at 
equilibrium the number of small drops is much greater than the number of large 
droplets, and as expected, within the range of viscosity ratio studied, the size of these 



Stretching and breakup of droplets in chaotic flows 215 

(a  
107 

102 

10' 

10" k.. 

lo-' 'lo., 10-8 10-5 I 0-4 10-3 1 
V (cm3) 

0.12 

0.10 

0.08 

rd (cm) 

0.06 

0.04 

n 
8 8 

0 

e t  8 
- 

e t  8 

-2  

0.02 I 
0.001 0.01 0. I 1 .o 10 

P 
FIGURE 14. (a )  Drop size distributions corresponding to experiments A, B, C, and D after 20 
periods. ( b )  The radii of 20 largest droplets from experiments A, B, C, and D after 20 periods as a 
function of the viscosity ratio p .  

smaller droplets decreases as the viscosity ratio increases. However, this trend does 
not apply to the larger droplets. Figure 14(b) shows the radii of the 20 largest 
droplets from each experiment as a function of their viscosity ratio. The plot suggests 
a minima between p = 0.40 and p = 2.8. 

The repetitive nature of chaotic mixing, stretching and folding, as well as the 
repetitive nature of the breakup process itself, suggest that the equilibrium drop size 
distribution might, in some sense, be self-similar, i.e. there might be a way to collapse 
all distributions into a single curve. In order to check this point we use scaling 
techniques similar to those employed in critical phenomena (Hohenberg & Halperin 
1977), aggregation theory (Meakin 1988 and references therein), and diffusion- 
reaction dynamics (Muzzio & Ottino 1989). The basic idea is to rescale the 
distribution f ( V , p )  into a distribution of the form 
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FIGURE 15. Rescaled drop size distributions for four different viscosity ratios (p = 0.010, 0.067, 

0.40 and 2.8). The data correspond to experiments A,  B, C, and D after 20 periods. 

where y = V / ( V ) ,  ( V )  is the arithmetic mean of volume sizes V ,  and 8 is some 
exponent to be determined. If scaling exists, F ( y )  is the same for all distributions. 
The first moment of all the distributions, M,, is given by, 

Since by normalization, M I  (total number of drops) is constant, and since by 
assumption, F ( y )  is independent of p ,  then 8 = 2. A rescaling of the form V2f(V,p) 
11s. V / (  V )  shows that this expectation is confirmed (see figure 15) ; all curves collapse 
into a master curve except for the case corresponding to the largest viscosity ratio 
( p  = 2.8). The success of scaling might be attributed in part to the underlying scaling 
structure of the stretching process itself (Muzzio, Swanson & Ottino 1991) and the 
deviation of the casep > 1 to the different nature of the breakup mechanism. In fact, 
more extensive studies suggest that there are two scaling families and that the same 
results are present even in partially chaotic flows (Muzzio, Tjahjadi & Ottino 1991). 

5. Conclusions 
A drop of an immiscible fluid placed in a chaotic flow is subjected to a deformation 

history including both stretching and compression. These actions lead to breakup 
and dispersion. In  this work we have presented experimental results and tried to 
rationalize the results by means of computations. The experimental results are 
representative of a large number of repeated experiments and we have tried to  focus 
on the most important phenomena. We have observed that breakup in chaotic flows 
presents some interesting qualitative differences compared to breakup in linear flows. 
However, some of the results obtained in terms of linear flows, especially those 
spanning a range between shear and elongation (e.g. Bentley & Leal 1986), provide 
considerable guidance in the interpretation of the results. 

Within chaotic regions, on the average, the net stretching is positive and when the 
viscous force is strong enough to overcome the interfacial tension the drop deforms 
and forms a long fluid thread increasing its length exponentially. However, 
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behaviour can be heavily dependent upon the initial placement of the blob. For 
example, droplets placed within regular islands might not break a t  all whereas 
chaotic regions produce thousands of drops (an example of this phenomenon appears 
in figure 2 of Ottino 1990). Therefore, in order to apply these results to chaotic flows 
it is first necessary to identify the locations and motions of the regular islands. This 
can be accomplished by means of computations or by careful experimentation 
(Leong & Ottino 1989). 

Chaotic flows typically fold fluid filaments and produce rather large variations of 
stretching and compression along the threads. This produces some modes of breakup 
that cannot happen in linear flows. The primary example is breakup in folds which 
is associated with a change of sign in stretching rate. A sufficiently extended filament 
that finds itself in a region of compression is susceptible to breakup. However, the 
primary mode of breakup during the initial stages of the process is capillary wave 
instabilities ; other modes of breakup such as necking, end-pinching, and fold- 
pinching occur as well. 

An ad hoc model assuming that moderately extended filaments behave passively 
is an excellent approximation especially for drops with low viscosity ratio ( p  < 1). In 
our experiments low-viscosity-ratio drops stretch passively but extend relatively 
little, O( 101-102), before they break, resulting in the formation of large droplets. 
These large droplets may undergo subsequent stretching, folding, and breakup. 
Under identical conditions, droplets in systems with p > 1 stretch substantially, 
O( 102-104), before they break, producing very small fragments ; these small fragments 
rarely break again. The equilibrium size distributions corresponding to p > 1 are 
more non-uniform than those corresponding to low viscosity ratios, but in general 
the mean drop size decreases as the viscosity ratio increases. This is primarily due to 
the existence of rather large droplets produced via fold-pinching and/or end- 
pinching, which resist further breakup. 

Our simplified analysis is applicable to fully extended filaments with negligible 
bending. In order to zoom into the details of breakup of a folded filament, or the 
formation of the satellites, sub-satellites, etc., it appears necessary to resort to more 
sophisticated numerical techniques, such as the boundary-integral methods (Rallison 
& Acrivos 1978; Stone & Leal 1989a, b ;  Mansour & Lundgren 1990). One of the 
things that should be investigated in this regard is the scaling in satellite size with 
the viscosity ratio. This scaling might be related to the results obtained regarding the 
scaling drop size distribution corresponding to different viscosity ratios. 

In this study we have presented experimental results that illustrate phenomena 
that occur when filaments are stretched and folded-by several orders of 
magnitude - in chaotic flows. In principle, these results or suitable experimental and 
computational extensions, should allow the design of fluid motions capable of 
achieving pre-established breakup conditions. Such a study will require knowing 
more about the typical flow histories experienced by fluid elements in typical chaotic 
flows (Muzzio, Swanson & Ottino 1990). Nevertheless, it appears that further studies 
of breakup in chaotic flows should be relevant to the design of mixing devices and to 
the understanding of processes involving flows of immiscible fluids. 

This work was supported by the Department of Energy, Office of Basic Energy 
Sciences. We would like to thank Fernando J. Muzzio for his assistance with the 
results of $4.4 and Paul D. Swanson for his critical reading of the manuscript. 
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